If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2+4q=2
We move all terms to the left:
3q^2+4q-(2)=0
a = 3; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·3·(-2)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{10}}{2*3}=\frac{-4-2\sqrt{10}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{10}}{2*3}=\frac{-4+2\sqrt{10}}{6} $
| n+116=180 | | 12(c-3)-30=12c+36 | | 10+6u=8u-4 | | 3k=-5-4/6 | | -b+0.94=-7.8 | | X(16-x)-4(16-x)=48 | | (4x-10)+(7x-25)=180 | | 1)3x+8=7x-16 | | 8c-4=3c+6 | | -3n-27=-6n+9 | | 65x-1=5x+11 | | 17.3w-6.07=17.5w-2.29 | | 9a-3=4a+9 | | 4x-12+5x+30=0 | | x/96=5/12 | | 3x+15=55 | | 3/(x+2)=(4x-4)/(x^2-4)-2/x | | 3k-10=5k+6 | | x+5x-2x+25=2(3x+5)+15 | | 2x-31-8x=5 | | m/0.27=-9.2 | | (4x–15)=3x+10 | | 2x-31=-9x=2 | | .75(6x-12)=34 | | -50=5(3x-7) | | -5-1x=-3x+7 | | -2=x/4-13 | | 2x-13+5x=-62 | | 12-5=3x+2 | | 4|2k+3|-2=6 | | 35x=83x | | 10+8f=7f |